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Abstract--(['he finite element method (FEM) is used to compute the conductivity of a matrix that contains 
a dispersed phase, which can be porosity or inclusions. The FEM accounts for the influence of shape, 
orientation and distribution of the dispersed phase on the conductivity. From these computations the two 
dimensional conductivity is obtained, that represents a useful lower limit of the real conductivity which is 
three dimensional. A relation has been derived that transfers the two dimensional conductivity into the 
real conductivity. As an example the influence of the microstructure of irradiated UO2 on the conductivity 

is calculated. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Porosity and inclusions change the thermal and the 
electrical conductivity of many materials. Various 
equations, both empirical and analytical, have been 
developed to describe this influence. A large spread 
exists between the results of various empirical for- 
mulas [1-3]. This ,;pread is likely due to a large diver- 
sity in the shape ~Lnd the orientation of the porosity 
and inclusions in various materials, which can not 
be accounted for in the equations. Several analytical 
equations describe the influence of porosity and 
inclusions on the conductivity [4-10]. In a recent 
paper [11] these a~aalytical equations were compared 
with results from the finite element method (FEM), 
and it was concluded that the analytical equation of 
Schulz [6] gives the best representation of the influence 
of a dispersed phase on the overall conductivity. How- 
ever, the equation of Schulz [6] can only give a good 
approximation of the overall thermal conductivity 
when the pores and inclusions have an ellipsoidal 
shape and are randomly positioned with respect to 
each other. When the equation of Schulz is used to 
compute the condLuctivity of materials that do not 
fulfil the above mentioned properties a considerable 
inaccuracy will be induced. 

For many materials, e.g. UO2 pellets that have been 
irradiated in a nuclear reactor, the structure of the 
porosity or inclusions is complex (Fig. 1). In these 
UO2 pellets the pores tend to collect at the grain 
boundaries and cannot be characterized by ellipsoids 
and, as a consequence, cannot be accurately described 
by the equation of Schulz [6]. In this paper the FEM 
is used to compute the conductivity of complex 
porosity or inclusion structures. The FEM accounts 

for the influence on the conductivity of the shape, the 
orientation and the distribution of the porosity and 
the inclusions in a more accurate way than by trying 
to apply the analytical equations of Schulz to these 
complex pore shapes. 

2. FINITE ELEMENT METHOD COMPUTATIONS 

A photograph of a cross-section of a material con- 
taining a dispersed phase yields only a two-dimen- 
sional (2D) image of the three-dimensional (3D) 
microstructure. It is impossible to fully reconstruct 
the exact 3D shape of the microstructure from the 2D 
photograph. Furthermore, it is impossible to make 
3D finite element method (FEM) conductivity cal- 
culations on a complex 3D microstructure, due to the 
limited capacity of computers. For these reasons FEM 
conductivity computations have been performed 
using a 2D photograph, which yields the conductivity 
in the plane of the photograph (called 2D conduc- 
tivity). A relation that transfers the 2D conductivity 
into the real (3D) conductivity is discussed in Section 
3. 

A photograph of a cross section of a piece of 
material has been made in such a way that the thermal 
gradient is positioned in the plane of the photograph 
(Fig. 1). The 2D thermal conductivity of the micro- 
structure marked in Fig. 1 has been computed as an 
example of the use of the FEM. This geometry has 
been entered in the commercially available FEM pro- 
gram Ansys, that describes the microstructure with 
triangular elements. In this example the thermal con- 
ductivity of the UO2 matrix was arbitrarily assumed 
to be ten times larger than that of the gas in the pores. 
The left and the right boundary of the area used for 

3503 



3504 K. BAKKER 

aiD 

CD 

fD 

NOMENCLATURE 

constants that characterize the n 
influence of the shape of the dispersed r 
phase particles on the i (i = 2, 3) T1 
dimensional conductivity T2 
concentration of dispersed phase 
material 
i dimensional (i = 2, 3) conductivity of 
the material containing the dispersed 
phase divided by the conductivity of 
the fully dense material 
length of the ellipsoids in the i- 
direction (i = x, y, z) 

form factor 
a2D/a3D, that is a function of 2D/2M 
arbitrary temperature 
arbitrary temperature. 

Greek symbols 
2c conductivity of the mixed 

material 
2D conductivity of the dispersed 

phase 
2M conductivity of the matrix phase. 
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Fig. 1. A part of the cross-section of a UO2 pellet. The light 
area is the UO2 matrix, the dark areas are pores. The marked 

region has been used for the FEM calculations. 

the FEM computation are taken adiabatic. The lower 
and the upper boundary of this area have the arbitrary 
temperatures Tl and /2, respectively. Consequently, 
the thermal gradient points in the y-direction. From 
these calculations the 2D temperature distribution 
(Fig. 2) and the distribution of the y-component of 
2D thermal flux (Fig. 3) were obtained for this pore 
structure. 

The FEM program computes the 2D thermal con- 
ductivity from the 2D thermal-flux profile. The 2D 
conductivity of Fig. 1 amounts to 69% of the con- 
ductivity of the fully dense material. The con- 
centration of dispersed phase material (CD) is also 
determined during the FEM computations, for the 
geometry in Fig. 1 co equals 0.167. In the absence of 
corrections the 2D conductivity results yield only a 
rough estimation of the 3D conductivity. Using equa- 

tion (1), that will be discussed in Section 3 and the 2D 
conductivity that amounts to 69%, it is calculated that 
the 3D conductivity of the microstructure shown in 
Fig. 1 amounts approximately to 76% of the con- 
ductivity of  the fully dense material. This result is 
more accurate than the results that can be obtained 
by applying an analytical equation to this problem. 

The extra degree-of-freedom of the flux in the 3D 
case compared to the 2D case, causes the 3D con- 
ductivity to be larger than the 2D conductivity, irres- 
pective whether the conductivity of the dispersed 
phase is larger or smaller than that of the matrix 
material. Hence, the 2D conductivity can be con- 
sidered as a lower limit of the 3D conductivity. 

3. THE 2D AND THE 3D CONDUCTIVITY 

3.1. Genera~relation 
In the previous section it has been discussed that 

analysing the 2D microstructure yields only a lower 
limit of the 3D conductivity. However, a 3D micro- 
structure with such a shape that it influences the 3D 
conductivity strongly, has 2D cross-sections that 
influence the 2D conductivity strongly. Hence, a 
relation exists between the computed 2D conductivity 
and the actual 3D conductivity. This makes it possible 
to determine the 3D thermal conductivity from the 
2D conductivity, without specific knowledge of the 
3D shape of the dispersed phase. Hereafter an example 
will be given that demonstrates the above mentioned 
relation. 

In 3D material that contains only (3D) spherical 
pores a photograph of this material will be completely 
different from a photograph of a 3D material that 
contains only (3D) randomly ordered disk shaped 
pores. The photograph of the material with spherical 
pores shows only circular cross sections, while the 
photograph of  the material with the disk shaped pores 
shows nearly only rectangular cross-sections. Only in 
the rare case that one of  the disks is oriented exactly 
parallel to the plane of the photograph a circular 
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Fig. 2. The 2D temperature distribution as obtained from FEM computations on the microstructure 
marked in Fig. 1. The lines mark the boundaries of the pores. 

cross-section will be seen on the photograph. A photo- 
graph of this porous material will, consequently, show 
a large amount of rectangles and few circular pores. 
It can be concludLed that a non-trivial relation exists 
between the 3D and the 2D shape. When the 3D disk 
shaped randomly ordered pores are non-conducting, 
they will have a much stronger influence on the 3D 
thermal conductJMty than 3D spherical non-con- 
ducting pores foI the same amount of  porosity. 2D 
rectangular, randomly ordered, pores will have a 
much stronger influence on the 2D thermal con- 
ductivity than 2D spherical pores for the same amount 
of porosity. Con,;equently, for 3D pore shapes that 
cause the 3D thermal conductivity to be low the 2D 
thermal conductivity is also low. Hence, a physically 
meaningful relation exists between the 2D and the 3D 
thermal conductivity. 

The relation between the 2D and the 3D con- 
ductivity is obtairLed by analyzing materials that con- 
tain pores or inclusions with a simple shape. Simple 
shapes are used since their influence on the thermal 
conductivity can be analysed exactly, both in 2D and 
in 3D, using the arLalytical equation of Schulz [6]. Such 
calculations have been performed for two different 
shapes of the dispersed phase: circular/spherical (Sec- 
tion 3.2) and elliptical/ellipsoidal (Section 3.3). A 
relation between the concentration of dispersed phase 
material, the 2D and the 3D conductivity has been 

obtained (equations (1) and (2)), that depends on the 
ratio of the conductivity of the matrix and that of the 
dispersed phase and that is nearly independent of the 
shape of the dispersed phase. This relation can be used 
for the complex dispersed phase shapes described with 
the FEM, which makes it possible to determine the 
3D conductivity from the FEM computed 2D con- 
ductivity. 

where 

1 - ((1 - (,~,D/,~,M))CD) --f2D 

1 -- ((1 -- (2D/AM))Co) --f3O 
= r  (2D < 2M) (I) 

f3D --b 1 
(2D > ,a-M) (2) 

AD - b  r 

~D~M 
b -  

CD2M +20 - (CD2D) 

C. is the concentration of dispersed phase material, 
f2D and f3o are the conductivities of the material con- 
taining the dispersed phase, in the 2D and the 3D 
case, respectively, divided by the conductivity of  the 
fully dense material. 2D and 2M are the conductivity 
of the dispersed phase and the matrix phase, respec- 
tively, r is a parameter that depends on 2n/2M. In the 
next two sections the value of r is calculated for vari- 
ous shapes of the dispersed phase particles, various 
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Fig. 3. The 2D distribution of the y-component of the thermal flux, as obtained from FEM computations 
on the microstructure marked in Fig. 1. The dark regions represent a larger flux than the light regions. The 

lines mark the boundaries of the pores. 

values of CD and for various values of ,~D/.~M. It is 
concluded in Section 3.4 that r depends on 2D/2M and 
that r hardly depends on the amount of dispersed 
phase material and on the shape of the dispersed phase 
particles. The derivation of the equations (1) and (2) 
is discussed in detail in the Appendix. 

The equations (1) and (2) are only valid when the 
dispersed phase has no preferential orientation in the 
plane perpendicular to the gradient. Such preferential 
orientation causes the shape of the cross-sections of 
the dispersed phase on a photograph to vary con- 
siderably, depending on the angle between the photo- 
graph and the preferential orientation. This variation 
makes the transfer of the 2D conductivity into the 
3D conductivity, as performed by equations (1) and 
(2), impossible. A preferential orientation of the dis- 
persed phase in the direction of the gradient can be 
accepted. Such a preferential orientation does not 
induce an angular variation in the shape of the cross- 
sections of the dispersed phase, due to the constant 
orientation of the photograph with respect to the 
direction of the preferential orientation of the dis- 
persed phase. The restrictions on the preferential 
orientation are made under the assumption that the 
conductivity is determined in the direction of the 
gradient. 

3.2. Circular (2D) and spherical (3D) particles 
The cross-section of a spherical particle is always a 

circular particle. This simple relation between the 
shape of the particle and the shape of the cross-section 
eases the calculation of r drastically. In this section a 
comparison is made of the conductivity of a matrix 
containing circular (2D) or spherical (3D) particles as 
a dispersed phase. The equations (3) and (4) were 
derived analytically by Schulz [6] and take the inter- 
actions between the dispersed phase material into 
account. For  randomly ordered circular (2D) porosity 
or inclusions holds : 

 o- c?My '2 
1 - c o  - ~ o  _,~  \~ ) (3) 

where 2c is the conductivity of the mixed material 
(2c =f2D2U). For  randomly ordered spherical (3D) 
porosity or inclusions holds : 

1--Co - 2D--2M\2¢.) (4) 

where 2c equals f3D,~M.  For 2D < /~M the values of r, 
that were calculated for c D = 0.1 and 0.2 using the 
equations (1)-(4), are shown in Fig. 4. For  2D > 2M 
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Fig. 4. The dependence of r on 2D/2M (2O < 2M) for ellipsoidal inclusions (+)  and spherical inclusions for 
cD = 0.1 (&) and 0.2 (O). The line is described by equation (7). 
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Fig. 5. The dependence of 1/r on ).M/2o (2D > 2M) for ellipsoidal inclusions (O) and spherical inclusions 
for CD = 0.05 (A) and 0.1 (11). The line is described by equation (8). 

the values of 1/r were calculated for c D = 0.05 and 0.1 
using the equations (1)-(4) and are shown in Fig. 5. 
These results are discussed in Section 3.4. 

3.3. Elliptical (2•)) and ellipsoidal (3D) particles 
In this section a comparison is made with equation 

(5) [4, 6, 12] of the conductivity of  a matrix containing 
particles with an ,elliptical (2D) or an ellipsoidal (3D) 
shape. This equation describes a 3D matrix with ellip- 
soidal particles. "[he interactions between the particles 
are neglected and the rotational axis of the ellipsoids 
is chosen to be parallel to the gradient. Equat ion (5) 
can also describe a 2D matrix with 2D elliptical pores 

or inclusions by choosing the length of one of the 
axes, that are oriented perpendicular to the gradient, 
infinitely long. 

{ 2D -- 2M "~ 
f ,  = 1 +Co . . . . .  (5) \/2M + (20-- 2M,n/),/ (i = 2, 3) 

The form factor n (n > 0), that can be derived both 
for a 2D and a 3D configuration, depends on the 
shape of the ellipsoids : 

n 2 s+l~)~ / ( s+ s+l~)(s+l~)  (6) 
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Table 1. f:D and f3t~ of a matrix containing ellip- 
tical/ellipsoidal particles with cD = 0.05 and .,~D/,~M = 0.5 

Ratio AD AD 

0.250 0.97222 0.97402 
0.333 0.97143 0.97356 
0.400 0.97034 0.97319 
0.500 0.97000 0.97262 
0.666 0.96875 0.97170 
1.000 0.96667 0.97000 
1.500 0.96429 0.96783 
2.000 0.96250 0.96605 
2.500 0.96112 0.96458 
3.000 0.96000 0.96336 
4.000 0.95833 0.96143 

Average 0.96601 0.96894 

lx, ly and lz are the length of the ellipsoids in the x-, y- 
and z-direction, respectively. The gradient is directed 
in the x-direction, s is the integration variable. The 
integrations have been performed numerically. 

In this section both 2D and 3D conductivity cal- 
culations were performed with equation (5). In the 3D 
case the lengths of both axes perpendicular to the 
gradient were chosen equal (ly = lz). When this ellip- 
soid is cut by a plane with the vector of the gradient 
in it, the cross-section has a constant shape, inde- 
pendent of the cutting plane. This cross-section is an 
ellipse with the same ratio of the length of the rotation 
axis and the other axis as that of the ellipsoid. The 
position of the cutting plane influences the size of the 
cross-section, but it does not influence the shape of 
the cross-section. The simple relation between the 
shape of the 3D ellipsoid and the shape of the 2D 
cross-section facilitates the calculation of r drastically. 
Table 1 shows the results of 2D and 3D conductivity 
calculations, that were performed for ci~ = 0.05 and 
AD/AM = 0.5 for various ellipsoids. Ratio is the length 
of the axis parallel to the gradient divided by the 
length of the axis perpendicular to the gradient. Ratio 
is equal for the 2D and the 3D calculations. Since the 
interactions between the pores or inclusions are not 
taken into account in equation (5), a linear relation 
between c D and bothf2D and f3D exists which causes r 
to be independent of CD. 

The average values in the last row of Table 1 are 
obtained by averaging over the ratio values shown in 
Table 1. The average values of both f2D and f3D are 
used to calculate, using equation (1) or (2), an effective 
r value for a particular AD/AM-Value. This procedure 
has been repeated for a large range of AD/AM-Values, 
both for A D < A M and for AD > AM. The thus-obtained 
r-values are included in Figs 5 or 6 and are discussed 
in Section 3.4. 

3.4. The relation between r and AD/AM 
The values of r  obtained in the previous two sections 

are shown in Fig. 4 (AD < AM) and Fig. 5 (A D > AM), 
The data in Fig. 4 have been fitted to the empirical 
relation : 

1 
r = 0.93+ (/~D < AM). (7) 

(AD/AM) + 1.03 

The data in Fig. 5 have been fitted to the empirical 
relation : 

1 1 
-r--  0.93+ (AM/AD)+0.85) (AM < AD)- (8) 

The data in Fig. 5 have been plotted as l/r instead of 
as r, in order to show the similarity of equations (7) 
and (8). The variation in r(AD < AM) or l/r(AD > AM) 
for various pore or inclusion shapes is approximately 
0.3, which yields an error inf3D that is small compared 
to the error in f3D when it is obtained using an ana- 
lytical equation. The use of equations (1) or (2) com- 
bined with equations (7) or (8) makes it possible to 
transfer f2D, as obtained from the FEM, intof3D. 

4. RESULTS 

As an example of the use of the FEM f2D of the 
microstructure shown in Fig. 1 has been computed for 
various values of AD, while 2u is 1.0. These f2o values 
have been converted into f3o values using the equa- 
tions (1), (2), (7) and (8). The thermal conductivity 
of a matrix containing spherical particles (equation 
(4)) has also been calculated for various A D values. 
The f2D, f3D and spherical inclusion values are shown 
in Fig. 6 for A D ~ A M and in Fig. 7 for/~O > AM" 

The influence of the dispersed phase (AD < AM) on 
the overall conductivity, as described byf2D, f3D and 
equation (4) (Fig. 6), has a comparable shape, but the 
magnitude of the effect differs, f2D can be determined 
accurately and represents a lower limit of the thermal 
conductivity (both for A D < A M and for A D > AM), 
which makes the 2D conductivity an important par- 
ameter. In the case of randomly ordered inclusions 
with AD < 2M, the upper limit of the thermal con- 
ductivity is described by the thermal conductivity of 
spherical inclusions (equation (4)). The difference 
between the lower and the upper limit is relatively 
small, which shows the importance of both f2D and 
equation (4). 

The influence of the dispersed phase (AD > AM) on 
the overall conductivity, as described by fZD, f3D and 
equation (4) (Fig. 7), has a comparable shape, but the 
magnitude of the effect differs. The overall con- 
ductivity saturates for large AD-Values. The con- 
ductivities for AD = 100000 (not shown) are only 
slightly larger than those for Ao = 100. In the case of 
randomly ordered inclusions with AD > AM the ther- 
mal conductivity of spherical inclusions (equation (4)) 
represents a lower limit of f3D- Hence, for AD > AM 
both spherical inclusions and fm represent a lower 
limit off3o. Figure 7 shows that the difference between 
both lower limits is rather small for the microstructure 
of Fig. 1. For  microstructures containing strongly 
elongated inclusions the f2D value is larger than the 
value obtained from spherical inclusions, while for a 
microstructure containing relatively spherical 
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Fig. 6. The values off2D andf3D for the microstructure marked in Fig. 1 and the thermal conductivity of a 
matrix containing spherical particles (equation (4)) for 2D < 1 (2M = 1). 
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Fig. 7. The values off2D andf3D for the microstructure marked in Fig. 1 and the thermal conductivity of a 
matrix containing spherical particles (equation (4)) for 20 > 1 (2M = 1). 

inclusions the value obtained from equation (4) will 
be larger thanf2D. Hence, for 2D > 2M the lower limit 
of the thermal conductivity closest to f3D is given by 
equation (4) for a microstructure with relatively 
spherical inclusions, while for a microstructure with 
elongated inclusions f2D yields the most useful lower 
limit. An upper lirait of the thermal conductivity for 
2D > 2M will not be discussed in this paper; however, 
various equations Ii13, 14] exist that describe an upper 
limit. These upper limits tend to overestimate the ther- 

mal conductivity rather strongly, which made it less 
useful to include these curves in Fig. 7. 

5 .  S U M M A R Y  

The use of the finite element method to calculate 
the conductivity of a matrix containing a dispersed 
phase is shown. The FEM accounts for the influence 
of the shape, the orientation and the distribution of 
the dispersed phase material on the conductivity. The 



3510 K. BAKKER 

2D conductivity,  tha t  is directly obta ined  from the 
F E M  calculations,  is a useful lower limit of  the actual  
3D conductivity.  The thermal  conduct ivi ty  of  a matr ix  
conta in ing spherical particles can be used as a upper  
limit of  the overall  the rmal  conduct ivi ty  in the case 
tha t  2D < 2M. A simple relat ion is ob ta ined  tha t  t rans-  
fers the 2D conduct ivi ty  into the 3D conductivity.  The 
influence of  the micros t ructure  of  i r radiated UO2 on 
the conduct ivi ty  has  been computed  as an  example of  

the use of  the FEM.  

temperature T~ t e m p e r a t u r e  T l 

temperature T~ temperature T 2 

Fig. A1. The geometries with the minimum influence of the 
dispersed phase on the conductivity: (a) the minimum 
decrease for 2D < 2M ; (b) the minimum increase for 2D > 2M. 
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APPENDIX 

2 M for a certain amount of dispersed phase. Part 2 describes 
the additional decrease of the conductivity for 2D < 2M and 
the additional increase of the conductivity for 2D > 2M due 
to the influence of the shape of the dispersed phase. By 
combining both parts a relation is obtained that transfers the 
2D conductivity into the 3D conductivity. 

1.2. Part 1 
The parallel geometry (Fig. Al(a)) induces the minimum 

decrease of the conductivity in the case of a dispersed phase 
with 2D < 2M. The conductivity (both for 2D and 3D) of this 
geometry is described by equation (A1). 

,~DCD -J- 2 M (1 - CD) 
f2D =f3D -- 2M (2D < 2M) (A1) 

The minimum increase of the conductivity in the case of 
a dispersed phase with 2D > 2M is described by the series 
geometry (Fig. Al(b)). The conductivity (both for 2D and 
3D) of this geometry is described by equation (A2). 

2D2M 
f2D =f3D -- CD2M _[_2 D __CD2 D (2D > 2M)" (A2) 

1.3. Part 2 
In the previous section the minimum decrease (for 

2D < 2M) or the minimum increase ( for 2D > 2M) of the con- 
ductivity has been discussed. The actual change of the con- 
ductivity (both in 2D and in 3D) is the sum of this minimal 
change and a second part that depends on the shape of the 
dispersed phase. The influence of this second part is assumed 
to be proportional to the amount of dispersed phase material. 
For 4o < 2M the combined influence of both parts on the 
overall conductivity can be described as : 

2DC D -]- 2 M (1 - CD) 
f • =  2M aiDCD (20<2M) ( i=2 ,3 ) .  

(A3) 

For 40 > 2M the combined influence of both parts on the 
overall conductivity can be described as : 

2D2M 
fiD -- CD2M_t_2D__CD2D +a~DCD (2D > 2M) (i = 2,3). 

(A4) 

a,D (i = 2, 3) are constants that characterize the influence of 
the shape of the dispersed phase particles on the conductivity 
in the 2D and the 3D case, respectively, a3D is smaller than, 
or equal to, am for 2D < 2M, while a3D is larger than, or equal 
to, azD for 2 D > 2 M. 

1.1. Introduction 
The change of the conductivity due to the dispersed phase 
can be described as the sum of two parts, both in 2D and in 
3D. Part 1 describes the maximum overall conductivity in 
the case 20 < 2M and the minimum overall conductivity in 
the case of 2D > 2M. These maximum and minimum overall 
conductivities represent the conductivities that are closest to 

1.4. Results 
In the previous section equations have been given for the 

2D and the 3D conductivity, both for 2D > 2M and for 
2D < 2M. The 2D and the 3D equations will be combined in 
order to obtain relations that can be used to transfer the 2D 
conductivity into the 3D conductivity. Combining equation 
(A3) for i equals 2 and 3 yields : 
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1 - ( ( I  --0-r,/2M))cD)--fx> _ a2o (20 < AM). 
1 -- ((1 -- (2r,/2M))CD) --f3D a3D 

Combining equation (A4) for i equals 2 and 3 yields : 

f 3 ~ - b  a3D (2 0 > 2M ) 
f2~ -- b = a2---D 

where 
2D2u 

b 
co2u + 2o -- co2o 

a2D divided by a3D is named r. In Section 3.4 is shown that r 
(A5) depends on 20/2r~, while r varies only slightly with the 

amount of  dispersed phase material and with the shape of  the 
dispersed phase particles, both for 2D > 2M and for 2D < 2M. 
When the shape of  the dispersed phase particles is such that 

(A6) a3D is large, a2D is also large, and when a3D is small, a2D is 
also small. Hence, r (a2D/a3r~) is nearly independent o f  the 
shape of  the dispersed phase particles, which makes it 
possible to obtain the 3D conductivity from the 2D 
conductivity. 


